
By Kwan Jun WenMastering Data Fetching and Mutations in React: A Practical Guide

React
Data Fetching / Mutations



Data Fetching,

Mutations?



� The process of modifying or creating data on a 
server.

� Often performed through POST, PUT, PATCH 
or DELETE requests.

� The process of retrieving data from a server or 
external source.

� Commonly done using GET requests, fetching 
data in formats like JSON or XML.

What is Data Fetching & Mutation?

Data Fetching Mutation



CSR vs SSR



� The server generates the HTML and sends it to 
the client.

� The content is rendered before it reaches the 
browser, improving SEO and initial page load.

� The browser fetches data and renders content 
directly on the client (the user's device).

� Common in single-page applications (SPAs).

CSR vs SSR

Client-Side Rendering (CSR) Server-Side Rendering (SSR)

Vike



https://nextjs.org/docs/app/building-your-application/routing/loading-ui-and-streaming

https://nextjs.org/docs/app/building-your-application/routing/loading-ui-and-streaming


Data Fetching · CSR

Fetch



This example demonstrates client-side data 
fetching in React using the fetch API and 
useState. It fetches a list of posts, handles 
loading and error states, and displays the data 
once retrieved. This is a very basic data fetching 
implementation when using Client-Side 
Rendering (CSR).

Data Fetching · CSR (Fetch)

Basic Client-Side Data Fetching with fetch



API Clients



API Clients

Simplifying API requests with an API Client

Axios: A promise-based HTTP 
client that simplifies request 
handling, with features like 
interceptors, automatic JSON 
parsing, and error handling.

Ky: A lightweight HTTP client built 
on fetch, providing a simpler API 
with automatic JSON parsing and 
modern features.

Wretch: A small, feature-rich 
alternative to fetch, offering a 
chainable API, built-in retries, and 
automatic JSON parsing.





Data Fetching Libraries



Data Fetching Libraries

Efficient Data Fetching and Mutations

Tanstack Query (React Query)

� Automates caching, background 
updates, and data 
synchronization.

� Handles pagination, mutations, 
and server state management.

SWR (stale-while-revalidate)

� Lightweight, with built-in caching 
and revalidation.

� Optimized for background data 
fetching and performance.

Apollo Client

� Full-featured GraphQL client with 
caching and state management.

� Advanced support for pagination 
and real-time data with 
subscriptions.





Data Fetching · CSR

React Query



Using React Query and Ky, data fetching 
becomes more declarative, reducing boilerplate 
and improving readability. The combination 
automates data caching, loading states, and 
error handling, simplifying the code and 
enhancing maintainability.

Data Fetching · CSR (React Query)

Client-Side Data Fetching with React 
Query



https://tkdodo.eu/blog/react-query-api-design-lessons-learned

https://tkdodo.eu/blog/react-query-api-design-lessons-learned


Simplifying a lot, React Query uses a cache to store data 
by query key. When you call useQuery with the same 
key (e.g., ["posts"]), it fetches the data once and stores 
it. On subsequent renders, it pulls the data from the 
cache instead of making another network request. This 
makes your app faster by reducing unnecessary API 
calls! You can also configure cache expiration and 
refetching behaviors.

https://tkdodo.eu/blog/inside-react-query

Data Fetching · CSR (React Query)

Caching with React Query





Mutations · CSR

Fetch



Here’s a simple example of adding mutations to our client-side app. By 
submitting a new post through the form, this code sends a POST request, 
updates the server, and refetches the posts to keep the UI in sync. This 
approach demonstrates handling mutations and data updates from 
scratch without using any data fetching library.

Mutations · CSR (Fetch)

Implementing Basic Mutations with State Updates



By calling fetchPosts after submitting the 
new post, we ensure our UI reflects the latest 
data from the server. This approach mirrors 
react-query's invalidateQueries / refetch, 
where refetching invalidated data keeps the 
client and server in sync.



Note:
 

While we could immediately add the new post via awaiting 
the response from create post API to our list, invalidating 
and refetching is often simpler and more maintainable, 
reducing errors and ensuring accurate data. This applies to 
react-query as well.

Mutations · CSR (Fetch)

Ensuring UI Sync · Revalidation

https://tanstack.com/query/v5/docs/framework/react/guides/updates-from-mutation-responses


Mutations · CSR

React Query



In this example, we use useMutation from React Query to handle adding 
new posts, simplifying our mutation workflow and ensuring the UI 
remains up-to-date.



After creating a new post, we use invalidateQueries to trigger a refetch of 
the "posts" query, synchronizing the latest data with minimal code. This 
pattern provides a clean, reliable way to keep our UI and backend in sync 
without manually managing state updates.



This approach also highlights the key benefit of React Query: automated 
cache management and query invalidation, reducing the chance of stale 
data and making our code easier to maintain over time.

Mutations · CSR (React Query)

Implementing Mutations with React Query





Data Fetching / Mutations · CSR

Fetch vs React Query







I prefer creating and exporting custom useXQuery (or queryOptions directly in react-query v5) or useXMutation hooks 
as reusable utilities across the app. This approach makes it easier to maintain consistent data-fetching logic.



It is clear that how React Query streamlines data fetching and mutations compared to manually managing state with 
plain fetch. Here’s why React Query outshines manual data fetching / mutation management with plain fetch 99.9% of 
the time�

� Simplified Error and Loading State Handlin�
� Automated Caching and Refetching via InvalidateQuerie�
� Configuration and Flexibility (retrying requests, stale time, polling, infiniteQuery etc.)

Data Fetching / Mutations · CSR (Fetch vs React Query)

Plain Fetch vs React Query



Data Fetching / Mutations · SSR

Fetch



In this example, we see a basic implementation of server-side data fetching and mutations without using React Query. 
Instead of relying on useEffect in the client, data fetching is handled on the server via the getPosts function and passed 
directly to the client component (Posts) as props. 



For pagination and other client-side states, we use searchParams to handle state across pages, allowing consistent 
pagination and navigation. The pagination state is updated with router.push, helping to maintain query parameters and 
refresh the data as needed�

� Server-side Fetching: Fetches data on the server and passes it as props, ideal for initial load optimizations�
� Pagination Handling: Updates pagination state in searchParams and triggers navigation via router.push�
� CRUD Operations: Supports createPost and deletePost server actions directly within the client component for mutation 

actions.

Data Fetching / Mutations · SSR (Fetch)

Server-Side Data Fetching / Mutations with Fetch





In this example, revalidatePath is used to tell Next.js to 
invalidate the cache for a specified path ("/" in this case) 
after creating a new post. By calling revalidatePath("/"), 
we ensure that the getPosts function will be triggered 
again when the page is re-rendered, so any newly 
created posts are included in the updated data.



This cache invalidation step guarantees that our UI 
stays up-to-date without requiring a full page refresh, 
enabling a more responsive experience.

Data Fetching · CSR (React Query)

Cache Invalidation with revalidatePath



Data Fetching / Mutations · SSR

React Query



We demonstrate the advanced server-side rendering (SSR) technique with React Query in Next.js. By using 
prefetchQueries on the server side and then dehydrating it back to the client, we achieve a smooth data handover, 
ensuring that the client has immediate access to pre-fetched data without needing to refetch on load.

Data Fetching / Mutations · SSR (React Query)

Server-Side Data Fetching / Mutations with React Query







Optimistic Updates

React Query



Optimistic updates allow you to update the 
UI immediately as if a mutation has 
succeeded while the mutation is still running, 
creating a seamless user experience.



Note:
 

Avoid using optimistic updates for the sake of 
"performance optimization.". For most cases, 
invalidateQueries is sufficient and simpler, making the 
code much more maintainable. Some example valid use 
cases for optimistic updates would be�
� Liking a pos�
� Bookmarking a post by clicking on a toggle star button

Optimistic Updates React Query

Optimistic Updates via UI

https://tanstack.com/query/latest/docs/framework/react/guides/optimistic-updates


Infinite Scrolling

React Query



Infinite scrolling allows you to load additional 
content dynamically as the user scrolls, 
creating a seamless user experience.



useInfiniteQuery: A hook designed to handle 
implementation of infinite scrolling, 
managing states and exposes utility function 
like `hasNextPage` and `fetchNextPage`.



InView: A utility to detect when the user 
scrolls near the end of the list.

Infinite Scrolling React Query

“Scroll to load more” via 
useInfiniteQuery





React Query

Complementary Tools



Using the official eslint plugin is highly 
recommended as it is used to enforce best 
practices and to help you avoid common 
mistakes.

React Query Complementary Tools

ESLint Plugin Query

https://tanstack.com/query/latest/docs/eslint/eslint-plugin-query


Setting up React Query Devtools is also highly 
recommended as they help visualize all the 
inner workings of React Query and will likely 
save you hours of debugging if you find 
yourself in a pinch!

React Query Complementary Tools

React Query Devtools

https://tanstack.com/query/latest/docs/framework/react/devtools


You don’t have to 

re-invent The Wheel



Opening the floor for questions...



Thank You



Special Thanks

https://chalk.ist/

https://www.kl-react.com/

https://github.com/typicode/json-server

Resources

https://tkdodo.eu/blog/tags/react-query

https://github.com/junwen-k/react-data-fetching-mutation

https://nextjs.org/docs/app/building-your-application/data-fetching

https://chalk.ist/
https://www.kl-react.com/
https://github.com/typicode/json-server
https://tkdodo.eu/blog/tags/react-query
https://github.com/junwen-k/react-data-fetching-mutation
https://nextjs.org/docs/app/building-your-application/data-fetching


https://linkedin.com/in/junwenk https://forms.gle/rcmjcrXPa6TEJ2hf8

https://github.com/junwen-k

https://linkedin.com/in/junwenk
https://forms.gle/rcmjcrXPa6TEJ2hf8
https://github.com/junwen-k

